Digital multiplexers reduce
chip count in logic design

by James E. Siebert
Michigan State University, East Lansing, Mich.

When attempting circuit optimization, logic designers
traditionally use algorithms directed at minimizing gate
count, but not chip count. However, if digital multi-
plexers are used to implement the logic functions in a
circuit containing less than six input variables, chip
count may often be minimized. This can usually be done
without tradeoffs in cost, speed, or propagation delay.
Multiplexers in the transistor-transistor-logic family
are available in quad two-input, dual four-input, or
single eight- and 16-input devices. A two-variable logic
block of up to four functions can be generated by a quad
two-input device, with the constraint that one variable is
common to each function. A three-variable function can

e e e e e e e e

| Seiel, fouteur
|

c B A F
| 0 0 0 0 f
’ 0 0 1 i

0 1 0 0
| 0 1 1 1

1 0 0 1

3 0 1 0

1 1 0 0

1 1 1 1

|
J D, Dg Ds Dy Dy D D D
v _—
| DATA INPUTS
A A (20)
g — B(Zl) SELECT
c ¢ (22) | 'NPUTS 74151
OUTPUT

E——————

1. One-chip solution. This circuit implements the logic function F =
AB+ AC + ABC. Variables A, B, C steer select inputs, and data inputs
are connected HIGH or LOW depending on the multiplexer function.
Discrete-gate implementation requires 12/3 packages.

120

normally be realized by using a single eight-input multi-
plexer, and a four-variable function can be implemented
with a single 16-input multiplexer.

The primary design tool is the truth table of the
particular function desired. For example, a_function of
three variables such as F = AB+AC+ ABC may be
implemented with a 74151 eight-input multiplexer.
Using its truth table, the desired function is implemented
as shown in Fig. 1. The multiplexer-select lines serve as
the inputs for variables A, B and C. Data inputs on the
multiplexer corresponding to the select addresses are tied
high or low to provide the proper output. Implementing
the same function using gates requires two three-input
NANDs, two two-input NANDs, and inverters to derive the
complement of the input variables for a total of 1%
packages.

By providing one variable at the data input, a lower-
order multiplexer may be used to realize the function.
That is, a three-variable function can be implemented
with only a four-input multiplexer, where an eight-input
device was previously required. As shown in Fig. 2,
partitioning the function table can aid in minimizing

|

|

1
|
| INPUTS
' SELECT OUTPUT 'I
ADDRESS .I

| B A C F |
i 0 0 0 0
. 0 0 1 1 1
: 0 1 0 1 |
| 0 1 1 0
| 1 0 0 0 |
| 1 0 1 0
| 1 1 0 1
| 1 1 1 .
(!
| .
| 1
|
| I—DQO
| ¢ '
| —
| w D3 Dy Dy Do

= \ / [
| 24 —
- DATA INPUTS
I A——1a (29| SELECT ’
| B ———— B (2%) | INPUTS %2 74153 |
| OUTPUT |

| F

2. Increased-efficiency circuit. Reduction of an 8-input multiplexer
to a 4-input multiplexer is possible if one variable is introduced at
data inputs (other variables form the select addresses). Truth table is
partitioned for variable C, and design proceeds as explained in text.

Electronics / April 28, 1977

e e ———

e e -

)
0
D
D
(2]
5
%ﬁ
D, Dg Ds D O3 O O, Do D, Dg Ds Dy Dy Dy D: Do
A A o) 74251 R) 74251
B B (2" g —— B (2"
2 2
g Ry OUTPUT ¢ ¢ (2% E QuTPUT
I f‘ T f2
E * {>v:r

e e e e

e

3. ane-varlable realization. Two three state eight-input multiplexers can generate any five-input function. Variable E is partitioned, and two

four-input problems are solved when implementing function. This can also be accomplished by any 16-input multiplexer.

design time. The single partitioned variable is made
available to the data inputs; the other variables form the
select addresses. By comparing the function output and
the partitioned variable for each select address, multi-
plexer data-input connections can be readily determined.
This method is also useful when implementing a four-
variable function with an ecight-input multiplexer.
However, an eight-input multiplexer usually cannot be
used for five-variable functions.

With one 24-pin package, a five-input function may be
realized either by the above method or by an alternative
one. The first method is needed to generate a five-
variable function with a 16-input multiplexer; four varia-
bles form the select address, and the partitioned variable
serves the inputs. An alternative approach is to use the

Calculator n

three-state output available on some multiplexers. In this
case, two 16-pin packages are needed, as shown in Fig. 3.
The variable D is made available at the data inputs, but
E is partitioned for ease in design in the truth table.
There are two four-input problems to be solved, and each
may be resolved by the method previously described.
Variable E actually selects one of the two multiplexer
functions.

Minimizing more than a five-variable combinational
function is an unwieldy problem. This design approach
does not result in a low package count or propagation
delay. A six-variable function requires five packages.
Generation of a seven-variable function requires nine
multiplexers, and an eight-variable function requires 17
multiplexers.

